Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics
نویسندگان
چکیده
In rock mechanics, the study of shear strength on the structural surface is crucial to evaluating the stability of engineering rock mass. In order to determine the shear strength, a key parameter is the joint roughness coefficient (JRC). To express and analyze JRC values, Ye et al. have proposed JRC neutrosophic numbers (JRC-NNs) and fitting functions of JRC-NNs, which are obtained by the classical statistics and curve fitting in the current method. Although the JRC-NNs and JRC-NN functions contain much more information (partial determinate and partial indeterminate information) than the crisp JRC values and functions in classical methods, the JRC functions and the JRC-NN functions may also lose some useful information in the fitting process and result in the function distortion of JRC values. Sometimes, some complex fitting functions may also result in the difficulty of their expressions and analyses in actual applications. To solve these issues, we can combine the neutrosophic numbers with neutrosophic statistics to realize the neutrosophic statistical analysis of JRC-NNs for easily analyzing the characteristics (scale effect and anisotropy) of JRC values. In this study, by means of the neutrosophic average values and standard deviations of JRC-NNs, rather than fitting functions, we directly analyze the scale effect and anisotropy characteristics of JRC values based on an actual case. The analysis results of the case demonstrate the feasibility and effectiveness of the proposed neutrosophic statistical analysis of JRC-NNs and can overcome the insufficiencies of the classical statistics and fitting functions. The main advantages of this study are that the proposed neutrosophic statistical analysis method not only avoids information loss but also shows its simplicity and effectiveness in the characteristic analysis of JRC.
منابع مشابه
Expressions of Rock Joint Roughness Coefficient Using Neutrosophic Interval Statistical Numbers
In nature, the mechanical properties of geological bodies are very complex, and their various mechanical parameters are vague, incomplete, imprecise, and indeterminate. However, we cannot express them by the crisp values in classical probability and statistics. In geotechnical engineering, we need to try our best to approximate exact values in indeterminate environments because determining the ...
متن کاملExpression and Analysis of Joint Roughness Coefficient Using Neutrosophic Number Functions
In nature, the mechanical properties of geological bodies are very complex, and its various mechanical parameters are vague, incomplete, imprecise, and indeterminate. In these cases, we cannot always compute or provide exact/crisp values for the joint roughness coefficient (JRC), which is a quite crucial parameter for determining the shear strength in rock mechanics, but we need to approximate ...
متن کاملA new approach for solving neutrosophic integer programming problems
Linear programming is one of the most important usages of operation research methods in real life, that includes of one objective function and one or several constraints which can be in the form of equality and inequality. Most of the problems in the real world are include of inconsistent and astute uncertainty, because of this reason we can’t obtain the optimal solution easily. In this paper, ...
متن کاملOn the powers of fuzzy neutrosophic soft matrices
In this paper, The powers of fuzzy neutrosophic soft square matrices (FNSSMs) under the operations $oplus(=max)$ and $otimes(=min)$ are studied. We show that the powers of a given FNSM stabilize if and only if its orbits stabilize for each starting fuzzy neutrosophic soft vector (FNSV) and prove a necessary and sufficient condition for this property using the associated graphs of the FNSM. ...
متن کاملNeutrosophic-Cubic Analaytic Hierarchy Process with Applications
In this paper we extend fuzzy analytic hierarchy process into neutrosophic cubic environment. The neutrosophic cubic analytic hierarchy process can be used to manage more complex problems when the decision makers has a number of uncertainty, assigning preferences values to the considered object. We also define the concept of triangular neutrosophic cubic numbers and their operations laws. The a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017